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1 Preliminaries and Introduction

Our setting is Bishop’s constructive mathematics (in the sense of [1], [2] and
[6]), mathematics developed with Constructive Logic (or Intuitionistic Logic
([11])) - logic without the Law of Excluded Middle P ∨ ¬P . We have to note
that ’the crazy axiom’ ¬P =⇒ (P =⇒ Q) is included in Constructive Logic.
Precisely, in Constructive logic the ’Double Negation Law’ P ⇐⇒ ¬¬P does
not hold but the following implication P =⇒ ¬¬P holds even in Minimal
Logic. In Constructive Logic ’Weak Law of Excluded Middle’ ¬P ∨ ¬¬P
does not hold, too. It is interesting that in Constructive logic the following
deduction principle A ∨ B,¬A � B holds, but we are not able to prove it
without ’the crazy axiom’.

Any notion in Bishop’s constructive mathematics has positively defined
symmetrical pair since Law of Excluded Middle does not hold in Constructive
Logic. Our intention is development of these symmetrical notions and investi-
gate their compatibility with so-called the ’first notions’ in Semigroup Theory.
As the first, semigroup is equipped with diversity relation compatible with the
equality, and, the second, the semigroup internal operation is total extensional
and strongly extensional mapping.

Let (S, =, �=) be a set (in the sense of [1], [2], and [6]), where ” = ” is
an equality and ” �= ” is a binary relation on S which satisfies the following
properties:

(x �= x), x �= y =⇒ y �= x, x �= y ∧ y = z =⇒ x ∼= z,

called diversity relation on S. Following Heyting, if the relation satisfies the
following implication

x �= z =⇒ (∀y ∈ S)(x �= y ∨ y �= z),

we say that it is an apartness. Let Y be a subset of S and let x ∈ S.
Following Bridges, by x �� Y we denote (∀y ∈ Y )(y �= x) and by Y C we denote
the subset x ∈ S : x �� Y - the strong complement of Y in S ([11]). The subset
Y of S is strongly extensional ([11]) in S if and only if y ∈ Y =⇒ y �= x∨x ∈ Y .

Let S be a set with apartness and let α and β be relations on S. The filed
product ([7-10]) of α and β is the relation defined by β ∗ α = {(x, z) ∈ S × S :
(∀y ∈ S)((x, y) ∈ α ∨ (y, z) ∈ β)}. For n ≥ 2, let nα = α ∗ ∗ α (n factors).
Put 1α = α. By c(α), we denote the intersection c(α) = ∩n

n∈Nα . The relation
c(α) is a cotransitive relation on S, by Theorem 0.4 of [9], called cotransitive
internal fulfillment of the relation α.

A relation q on S is a coequality relation on S ([9], [10]) if and only if

q (consistensy), q−1 = q (symmetry) and q ⊆ q ∗ q (cotransitivity).
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In this case we can construct the following factor set S/q = {aq : a ∈ S}
with:

aq =1 bq ⇐⇒ (a, b) �� q, aq �=1 bq ⇐⇒ (a, b) ∈ q.

Let S = (S, =, �=, ·) be a semigroup with apartness and the semigroup
operation being strongly extensional in the following sense

(∀a, b, x, y ∈ S)((ay �= by =⇒ a �= b) ∧ (xa �= xb =⇒ a ∼= b)).

Recall that a semigroup S is called band if a2 = a, for all a ∈ S. A subset
T of S is a completely prime subset of S ([3]) if and only if

(∀x, y ∈ S)(xyinT =⇒ x ∈ T ∨ y ∈ T ).

Let q be a coequality relation on semigroup S. For q we say that it is
anti-congruence on S ([9], [10]) if and only if

(∀a, b, x, y ∈ S)((ax, by) ∈ q =⇒ (a, b) ∈ q ∨ (x, y) ∈ q).

This is equivalent with the following:

(∀u, x, y ∈ S)(((ux, uy) ∈ q =⇒ (a, b) ∈ q) ∧ ((xu, yu) ∈ q =⇒ (x, y) ∈ q)).

If q is anti-congruence on semigroup S, then the strong complement qC of
q is a congruence on the semigroup S compatible with q. (For equality e and
coequality q on a semigroup S we say that they are compatible if and only if
qoe ⊆ q and eoq ⊆ q.) We can construct semigroups S/(qC , q) = {aqC : a ∈ S}
and S/q with

aqC =1 bqC(a, b) �� q, aqC �=1 bqC ⇐⇒ (a, b) ∈ q, aqC · bqC = (ab)qC .

aq =1 bq ⇐⇒ (a, b) �� q, aq �=1 bq ⇐⇒ (a, b) ∈ q, aq · bq = (ab)q.

It is easy to establish the fact: S/(qC, q) ∼= S/q.

There is a very interesting property of coequality relation on semigroup S
with apartness ([10], Theorem 5): Let q be a coequality relation on a semi-
group S with apartness. Then the relation q+ = {(x, y) ∈ S × S : (∃a, b ∈
S1)((axb, ayb)q)} is an anti-congruence on S and it is minimal extension of q.
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Let us recall some standard notions and notations about relations and
mappings: For relation θ ⊆ S × S we say ([8]) that it is an anti-order relation
on semigroup S if and only if:

θ ⊆�=, �=⊆ θ ∪ θ−1(linearity), θ ⊆ θ ∗ θ

and compatible with the semigroup operation:

(∀a, b, x, y ∈ S)(((ay, by) ∈ θ =⇒ (a, b) ∈ θ) ∧ ((xa, xb) ∈ θ =⇒ (a, b) ∈ θ)).

Relations ≤ and θ are compatible if and only if ¬(x ≤ y∧xθy). A mapping
ϕ : S −→ T must be strongly extensional : (∀x, x′ ∈ S)(ϕ(x) �=T ϕ(x′) =⇒
x �=S x′); ϕ is an embedding if and only if (∀x, x′ ∈ S)(x �=S x′ =⇒ ϕ(x) �=T

ϕ(x′)). If ϕ : S −→ T is a strongly extensional mapping between sets with
apartnesses, then the sets Kerϕ = {(x, x′) ∈ S × S : ϕ(x) =T ϕ(x′)} and
Anti − kerϕ = {(x, x′) ∈ S × S : ϕ(x) �=T ϕ(x′)} are compatible equality an
coequality relation on S. Also, for the mapping f : (S,≤, θ) −→ (T,≤, Θ) we
say that it is order isotone if x ≤ y =⇒ f(x) ≤ f(y) holds; f is order reverse
isotone if f(x) ≤ f(y) =⇒ x ≤ y; f is anti-order isotone if xθy =⇒ f(x)Θf(y)
holds; f is anti-order reverse isotone if f(x)Θf(y) =⇒ xθy holds.

Example: Let T be a subset of a semigroup S. Then:
(1) The relation q on S defined by (a, b) ∈ Q ⇐⇒ (∃x, yS1)((xay ∈ T ∧

xby �� T ) ∨ (xby ∈ T ∧ xay �� T )) is an anti-congruence on S.
(2) For a subset T of a semigroup S we say that it is a consistent subset

of S if and only if (∀x, y ∈ S)(xy ∈ T =⇒ x ∈ T ∧ y ∈ T ) holds. If T is a
consistent subset of S, then the relation q on S, defined by (a, b) ∈ q ⇐⇒ a �=
b ∧ (a ∈ T ∨ b ∈ T ), is an anti-congruence on S.

Semigroups with apartnesses were defined and studied for the first time by
A.Heyting. P.T.Johnstone, J.C.Mulvey, F.Richman, R.Mines, D.A.Romano,
W.Ruitenburg, A.S.Troelstra and D.van Dalen also have some results in this
field. There are more general problems on semigroup with apartness in Con-
structive Algebra. In this paper we give a construction of a coequality relation
q on an ordered semigroup (S, =, �=, ·,≤, θ) with apartness under a pair of an
order ”≤” and an anti-order ”θ” relations such that q is a band anti-congruence
on ordered semigroup S. (Definition of band anti-congruence on semigroup S
ordered under a pair of relations is given below.)

For undefined notions and notations of Semigroup Theory we refer to [3],
[4] and of items in Constructive Mathematics we refer to [1-2], [6] and [11] and
to [8-10].

Lemma 0 ([3], Theorem 1.24) The following conditions for a semigroup S
are equivalent :
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(1) (∀a, b ∈ S)((a, ab) �� q ∧ (a, ba) �� q);
(2) (∀a, b ∈ S)((a, aba) �� q);
(3) (∀a, b, c ∈ S)((a, a2) �� q ∧ (abc, ac) �� q).

We have the following:

Lemma 1: Relation θ on band S, defined by

(a, b) ⇐⇒ a �= ab ∨ a �= ba

is an anti-order relation on S.
Proof : a �= b =⇒ a �= ab ∨ ab �= b

=⇒ (a, b) ∈ θ ∨ (b, a) ∈ θ;
(a, c) ∈ θ ⇐⇒ a �= ac ∨ a �= ca
=⇒ (a �= ab ∨ ab �= abc ∨ abc �= ac) ∨ (a �= ba ∨ ba �= cba ∨ cba �= ca)
=⇒ (a �= ab ∨ b �= bc ∨ ab �= a) ∨ (a �= ba ∨ b �= cb ∨ cb �= c)
=⇒ (a, b) ∈ θ ∨ (b, c) ∈ θ;
(a, b) ∈ θ ⇐⇒ a �= ab ∨ a �= ba
=⇒ a �= a2 ∨ a2 �= ab ∨ a �= a2 ∨ a2 �= ba
=⇒ a �= b. �

So, band S is supplied with compatible pair of relations: order ”≤” and
anti-order ”θ” defined by x ≤ y iff x = xy = yx, and xθy iff x �= xy or x �= yx,
for every x,y in S. Let us note that if (S, =, �=) is a band, then (S, =, �=, ·,≤, θ)
is not an ordered semigroup, in general (unless in the special case when the
multiplication on S is commutative).

If qC is a band congruence on semigroup S = (S, =, �=, ·), i.e. if

(∀a ∈ S)((a, a2) �� q),

then we say that q is a band anti-congruence on S. If qC is a left zero
and right zero band congruence on S ([3] [4]), i.e. if (∀a, b ∈ S)((a, ab) ��
q ∧ (a, ba) �� q) we say that q is a rectangular band anti-congruence on S.

If (S, =, �=, ·,≤) is an ordered semigroup and H ⊆ S, we denote by (H ] the
subset of S defined by (H ] = {t ∈ S : (∃h ∈ H)(t ≤ h)}.

Now, following the classical definition in [5], we will define band anti-
congruence on semigroup (S, =, �=, ·,≤, θ) ordered under a pair of (compati-
ble) order ”≤” and anti-order relation ”θ”: An anti-congruence q on ordered
semigroup (S, =, �=, ·,≤, θ) is a band anti-congruence on S if and only if

a ≤ b =⇒ (a, ab) �� q ∧ (a, ba) �� q,
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and

(a, ab) ∈ q ∨ (a, ba) ∈ q =⇒ (a, b) ∈ θ.

As it is easily seen, our definition is different from the classical definition
given in [5], because we are in Constructive mathematics and, besides, must
be some connection between anti-congruence and anti-order relation in such a
semigroup.

2 The Main Results

In the first result we describe classes of a band anti-congruence q on an ordered
semigroup:

Theorem 2 Let (S, =, �=, ·,≤, θ) be an ordered semigroup and q a band
anti-congruence on S. Then we have the following :

(1) (∀x ∈ S)((x, x2) �� q ∧ (x2, x) �� q).

(2) S/q is a band.

(3) The class xq, generated by the element x of S, is a strongly extensional
completely prime proper subset of S for all x in S.

(4) If x ≤ y, then (xy, yx) �� q.

(5) The natural epimorphism π : S −→ S/q is order isotone and anti-order
reverse isotone homomorphism.

(6) t �� xq ∧ y ∈ S =⇒ ((ty �� xq ∧ yt �� xq) ∨ tθy).

Proof :

(1) (∀x ∈ S)((x, x2) �� q ∧ (x2, x) �� q) and (∀x ∈ S)(xq · xq =1 xq). In
fact: If x ∈ S, then x ≤ x, and (x, x2) �� q. Since q is symmetric, we also have
(x2, x) �� q. Therefore, immediately, (∀x ∈ S)(x2q =1 xq) holds.

(2) S/q is a band. Indeed, as we have already seen, (S/q, =1, �=1, ·) is a
semigroup, and by (1), it is a band.

(3) The class xq, generated by the element x of S, is a strongly extensional
completely prime right subset of S for all x in S. Indeed, let x ∈ S. Clearly,
xq ⊂ S because x �� xq. Let uv ∈ xq. Then, (x, uv) ∈ q. Thus, (x, x2) ∈ q
or (x2, uv) ∈ q. Since the case (x, x2) ∈ q is impossible, we have (x, u) ∈ q or
(x, v) ∈ q, because q is an anti-congruence on S.

(4) If x ≤ y, then (xy, yx) �� q . Let x ≤ y. Since q is a band anti-
congruence on S, we have (x, xy) �� q and (x, yx) �� q. Let (u, v) be an
arbitrary element of q. Then (u, xy) ∈ q or (xy, x) ∈ q or (x, yx) ∈ q or
(yx, v) ∈ q. Hence, u �= ab or ba �= v, because the cases (xy, x) ∈ q and
(x, yx) ∈ q are impossible. So, (u, v) �= (xy, yx).
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(5) If q is a band anti-congruence on ordered semigroup (S, =, �=, ·,≤, θ)
then, as we have already seen, (S/q, =1, �=1, ·) is a band. So, the set S/q, with
the relations ”≤1” and ”θ1” on S/q defined by:

xq ≤1 yq ⇐⇒ xq =1 xq ∧ yqxq =1 yq · xq,

xqθ1yq ⇐⇒ xq �=1 xq · yq ∨ xq �=1 yq · xq,

is ordered set under compatible order and anti-order relation. Moreover,
since q is a band anti-congruence, we have

x ≤ y =⇒ (x, xy) �� q ∧ (x, yx) �� q

⇐⇒ xq =1 xyq ∧ xq =1 yxq

=⇒ xq ≤1 yq;

xqθ1yq ⇐⇒ xq �=1 xq · yq ∨ xq �=1 yq · xq

⇐⇒ (x, xy) ∈ q ∨ (x, yx) ∈ q

=⇒ xθy.

Therefore, the natural epimorphism π : S −→ S/q is order isotone and
anti-order reverse isotone homomorphism.

(6) t �� xq ∧ y ∈ S =⇒ ((ty �� xq ∧ yt �� xq) ∨ tθy). In fact: Let u be
an arbitrary element of xq. Then (u, x) ∈ q. Thus (u, ty) ∈ q or (ty, t) ∈ q
or (t, x) ∈ q. Hence, u �= ty or tθy, because (t, x) ∈ q is impossible. So, the
implication

t �� xq ∧ y ∈ S =⇒ (ty �� xq ∨ tθy)

holds. Analogously we show the implication t �� xq ∧ y ∈ S =⇒ (yt ��
xq) ∨ tθy). �

The following theorem is the main result of our paper:

Theorem 3 Let (S, =, �=, ·,≤, θ) be an ordered semigroup. The following
are equivalent :

(1) There exists a band anti-congruence on S.
(2) There exists a band (B, =1, �=1, o,≤1, θ1) and a mapping π : S −→ B

which is strongly extensional order isotone and anti-order reverse isotone sur-
jective homomorphism such that π−1(a) is a strongly extensional subsemigroup
of S and the following implication t ∈ π−1(a)∧ y ∈ S =⇒ ((ty ∈ π−1(a)∧ yt ∈
π−1(a)) ∨ tθy) holds for every a ∈ B.



8 S. Crvenkovic, D. A. Romano and M. Vincic

(3) There exists a band (B, =1, �=, ◦) and a family � = {Sb : b ∈ B} of
strongly extensional subsemigroups of S, such that

(3.1) Sa ∩ Sb = ∅ for all a, b ∈ B, a �=1 b;

(3.2) S = ∪b∈BSb;

(3.3) SaSb ⊆ Sa◦b for all a, b ∈ B;

(3.4) If a, b ∈ B such that Sa ∩ (Sb] �= ∅ , then a = aob = boa;

(3.5) t ∈ Sa ∧ y ∈ S =⇒ ((ty ∈ Sa ∧ yt ∈ Sa) ∨ tθy) for every a of S.

Proof :

(1) =⇒ (2). Let q be a band anti-congruence on S. Then the class aq = xq,
generated by element x, is a strongly extensional completely prime subset of
S. As we have already seen (S/q, =1, �=1, o,≤1, θ1) is a band. We consider
the mapping π : S −→ S/q by π(x) = xq. The mapping π is a strongly
extensional homomorphism. Indeed, if x, y ∈ S, then π(xy) = (xy)q =1

xqoyq = π(x)oπ(y). Since q is a band anti-congruence on S then: if x ≤
y, then xq ≤1 yq and if xqθ1yq then xθy hold. The mapping π is clearly
onto. Therefore,π is a strongly extensional order isotone and anti-order reverse
isotone surjective homomorphism. Let now x ∈ S. Suppose that t ∈ π−1(xq),
i.e. suppose that π(t) =1 tq =1 xq. Thus, t �� xq holds. Opposite, let s �� xq.
Then sq =1 xq, i.e. π(s) =1 sq =1 xq. So, s ∈ π−1(xq). Also, π−1(xq) = (xq)C

is a subsemigroup of S. The following implication

t ∈ π−1(aq) ∧ y ∈ S =⇒ ((tyπ−1(aq) ∧ yt ∈ π−1(aq)) ∨ tθy)

holds for every a ∈ B. To prove that, let t ∈ π−1(aq) ∧ y ∈ S. Then
t ∈ π−1(aq)) = (aq)C and y ∈ S. Let u be an arbitrary element of aq. Then
(u, a) ∈ q. Thus (u, ty) ∈ q or (ty, t) ∈ q or (t, a) ∈ q. Hence, u �= ty or
tθy, because (t, a) ∈ q is impossible. Analogously we show the implication
t �� aq ∧ y ∈ S =⇒ (yt �� aq) ∨ tθy).

(2) =⇒ (3). Let (B, =, �=, o,≤1, θ1) be a band and f : S −→ B be a
homomorphism such that f−1(b) is a subsemigroup of S for every b ∈ B. For
each b ∈ B, we put Sb = f−1(b). Then we have the following:

(i) Let a, b ∈ B, a �= b. Then f−1(a) ∩ f−1(b) = ∅. Indeed: If t ∈
f−1(a) ∩ f−1(b), then f(t) = a, f(t) = b, so a = b which is impossible.

(ii) S = ∪a∈BSa. Obviously, if a ∈ B, then a ⊆ B, so f−1(a) ⊆ S for every
a ∈ B, and ∪a∈BSa ⊆ S. Let now x ∈ S. Then, for the element a = f(x) ∈ B,
we have x ∈ f−1(a). So x ∈ f−1(a) = S ⊆ ∪b∈BSb.

(iii) Let a, b ∈ B. Then f−1(a)f−1(b) ⊆ f−1(aob). Indeed, let xy ∈
f−1(a)f−1(b), where x ∈ f−1(a), y ∈ f−1(b). Since f is a homomorphism,
we have f(xy) = f(x)of(y) = aob, so xy ∈ f−1(aob).

(iv) Let a, b ∈ B such that Sa ∩ (Sb] �= ∅. Then, a ≤1 b holds. Indeed, let
x ∈ Sa∩ (Sb]. Since x ∈ Sa = f−1(a), we have f(x) = a. Since x ∈ (Sb], there
exists y ∈ Sb such that x ≤ y. Since y ∈ Sb = f−1(b), we have f(y) = b. On
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the other hand, since x ≤ y and f is order isotone homomorphism, we have
f(x) ≤1 f(y). Therefore, a ≤1 b.

(v) t ∈ Sb ∧ y ∈ S =⇒ ((ty ∈ Sb ∧ yt ∈ Sb) ∨ tθy) for every b ∈ S. In fact:
Let t ∈ Sb = f−1(b) ∧ y ∈ S. By (2), we have

t ∈ π−1(b) ∧ y ∈ S =⇒ ((ty ∈ π−1(b) ∧ yt ∈ π−1(b)) ∨ tθy)

i.e. we have

t ∈ Sb ∧ y ∈ S =⇒ (ty ∈ Sb ∧ yt ∈ Sb) ∨ tθy.

(3) =⇒ (1). Define a relation σ on S in the following way:

σ = {(x, y) ∈ S × S : (∃a ∈ B)(y ∈ Sa ∧ x ∈ Sa)}.
Then we have:
(I)σ is a band congruence on S. In fact,
If x ∈ S(= ∪a∈BSq), then there exists a ∈ B such that x ∈ Sa, thus

(x, x) ∈ σ.

The relation σ is clearly symmetric.
Let (x, y) ∈ σ and (y, z) ∈ σ. Then there exists a ∈ B such that x ∈

Sa ∧ y ∈ Sa and b ∈ B such that y ∈ Sb ∧ z ∈ Sb. Then, y ∈ Sa ∩Sb. Thus, we
have Sa ∩ Sb �= ∅ and, it has to be Sa = Sb . So, x ∈ Sa ∧ y ∈ Sa. Therefore,
we have (x, z) ∈ σ.

Let (x, y) ∈ σ and let z be an arbitrary element of S. Then, (xz, yz) ∈ σ.
Indeed, since (x, y) ∈ σ, there exists a ∈ B such that x ∈ Sa ∧ y ∈ Sa.
Since z ∈ S, we have z ∈ Sb for some b ∈ B. By hypothesis, we have
xz ∈ SaSb ⊆ Sa◦b , yz ∈ SaSb ⊆ Sa◦b . Thus, (xz, yz) ∈ σ.

In a similar way we prove that σ is a left congruence on S.
Let x ≤ y. Then (x, xy) ∈ σ and (x, yx) ∈ σ. Indeed, since x ∈ S, there

exists a ∈ B such that x ∈ Sa. Since y ∈ S, there exists b ∈ B such that y ∈ Sb.
Since x ∈ S ∧ x ≤ y ∈ Sb, we have x ∈ (Sb]. Hence, we have x ∈ Sa ∩ (Sb].

Then, by (3.4), we get a ≤1 b i.e. a = aob = boa. By (3.3), we have xy ∈
SaSb ⊆ Sa◦b = Sa and yx ∈ SbSa ⊆ Sb◦a = Sa. Since x ∈ Sa ∧ xy ∈ Sa(a ∈ B),
we have (x, xy) ∈ σ. Also, x ∈ Sa ∧ yx ∈ Sa(a ∈ B), imply (x, yx) ∈ σ.

Therefore, the relation σ is a band congruence on S.
(II) Let x ∈ S. Then xσ is a subsemigroup of S. In fact; let x ∈ Sa for

some a ∈ B. We have xσ = Sa. Indeed: Let y ∈ xσ. Since (y, x) ∈ σ, there
exists b ∈ B such that y ∈ Sb ∧ x ∈ Sb. Then x ∈ Sa ∩ Sa. Thus, we have
Sb = Sa , a = b, and y ∈ Sa. Opposite, let y ∈ Sa. Since x ∈ Sa ∧ y ∈ Sa,
where a ∈ B, we have (x, y) ∈ σ. Then y ∈ yσ = xσ.

(III) By [7], the relation q = c(σC) = ∩n
n∈N(σC) is a maximal coequality

relation on semigroup S compatible with σ . Further on:
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(i) Let x ≤ y and let (u, v) be an arbitrary element of q. Then (u, x) ∈ q
or (x, xy) ∈ q or (xy, v) ∈ q and (u, x) ∈ q or (x, yx) ∈ q or (yx, v) ∈ q . Thus,
(u, v) �= (x, xy) and (u, v) �= (x, yx) because (x, xy) ∈ q and (x, yx) ∈ q are
impossible by (I). So, (x, xy) �� q and (x, yx) �� q.

(ii) Let x, y be arbitrary elements of S such that (x, xy) ∈ q. Then there
exists a in B such that x ∈ Sa . Thus, by (3.5), we have x ∈ Sa∧y ∈ S =⇒ xy ∈
Sa ∨ xθy. If xy ∈ Sa , then (x, xy) ∈ σ. So, we have xθy because the first case
is impossible. Analogously, we have that the implication (x, yx) ∈ q =⇒ xθy
holds.

(iii) Let (ux, uy) ∈ q and let (s, t) be an arbitrary element of σ . Then
(us, ut) ∈ σ since σ is a congruence. Thus (ux, uy) ∈ q =⇒ (ux, us) ∈ q ∨
(us, ut) ∈ q∨(ut, uy) ∈ q =⇒ ux �= us∨(us, ut) ∈ q∨ut �= uy =⇒ x �= s∨t �= y
(because ¬((us, ut) ∈ σ ∧ (us, ut) ∈ q)) =⇒ (x, y) �= (s, t) ∈ σ.

Therefore, we have the implication
(ux, uy) ∈ q =⇒ (x, y) �� σ .

Let n be a natural number and suppose that the implication
(ux, uy) ∈ q =⇒ (x, y) ∈n σ

holds. If (r, t) is an arbitrary element of n+1σ = σ ∗n σ , i.e. if

(∀s ∈ S)((r, s) ∈ σ ∨ (s, t) ∈n σ),

then (∀s ∈ S)((ur, us) ∈ σ ∨ (us, ut) ∈n σ) and we have
(ux, uy) ∈ q =⇒ (∀s ∈ S)((ux, ur) ∈ q ∨ (ur, us) ∈ q ∨ (us, ut) ∈ q ∨ (ut, uy) ∈
q) =⇒ ux �= ur ∨ (∀s ∈ S)((r, s) �� σ ∨ (s, t) ��n σ) ∨ ut �= uy =⇒ (x, y) �=
(r, t) ∈n+1 σ

because the second case is impossible. So, by induction, the formula (∀n ∈
N)((ux, uy) ∈ q =⇒ (x, y) ��n σ) is valid. Thus, the implication (ux, uy) ∈
q =⇒ (x, y) ∈ ∩n

n∈N (σC) = q holds. For another implication (xu, yu) ∈ q =⇒
(x, y) ∈ q the proof is analogous. Therefore, the relation q is a band anti-
congruence on anti-ordered semigroup S. �
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